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Spin-charge coupling in a band ferromagnet:
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The effects of correlation-induced coupling between spin and charge fluctuations on spin-wave excitations in
a band ferromagnet are investigated by including self-energy and vertex corrections within a systematic
inverse-degeneracy expansion scheme which explicitly preserves the Goldstone mode. Arising from the scat-

tering of a magnon into intermediate spin-excitation states (including both magnon and Stoner excitations)
accompanied with charge fluctuations in the majority-spin band, this spin-charge coupling results not only in a
substantial reduction of magnon energies but also in anomalous softening and significant magnon damping for
zone-boundary modes lying within the Stoner gap. Our results are in good qualitative agreement with recent
spin-wave excitation measurements in colossal magnetoresistive manganites and ferromagnetic ultrathin films

of transition metals.
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I. INTRODUCTION

Recent observations' of large wave-vector spin-wave
(magnon) excitations in ferromagnetic ultrathin films of tran-
sition metals using spin-polarized electron energy-loss spec-
troscopy (SPEELS) are of crucial importance from many
perspectives. For example, apart from providing insight into
the microscopic mechanism of ferromagnetic ordering,
which can be of direct relevance in context of recent interest
in ferromagnetic nanostructures having potential technologi-
cal applications for magnetoelectronic devices,* these obser-
vations are also of fundamental importance in understanding
the electron-spin dynamics in itinerant ferromagnets.’ This is
because these large wave-vector excitations, which distin-
guish an itinerant ferromagnet from the relatively well un-
derstood insulating (Heisenberg) ferromagnet, have remained
experimentally unexplored in the past owing to certain char-
acteristic features such as heavy damping and large excita-
tion energy.

Theoretical investigations of spin dynamics in these ultra-
thin films have been carried out mostly by considering trans-
verse spin fluctuations at the level of random-phase approxi-
mation (RPA) in the ferromagnetic state of the Hubbard
model.>® However, due to neglect of the strong correlation
effects in itinerant ferromagnets, RPA is well known to over-
estimate the spin-wave energy, spin stiffness, and Curie tem-
perature, etc., as explicitly demonstrated in recent theoretical
investigations by incorporating correlation effects beyond
RPA.>!0 Indeed, signature of inherent many-body effects
have been found in recent SPEELS (Ref. 3) and angle-
resolved photoemission spectroscopy!!~!* (ARPES) studies
in the ferromagnetic phase of Fe. These experimental find-
ings of the signature of strong correlation effects, for ex-
ample, the much lower magnon energy in Fe film than pre-
dicted theoretically at RPA level, as observed in SPEELS,?
and the quasiparticle mass enhancement and reduced band-
width in comparison to that predicted within the density-
functional theory, as observed in ARPES studies,'? have pro-
vided substantial indication of the electron-magnon coupling
as the possible origin.
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Spin dynamics in the metallic ferromagnetic phase of co-
lossal magnetoresistive (CMR) manganites has also attracted
considerable current interest.'* Recent spin-wave excitation
measurements have revealed several anomalous features in
the magnon spectrum near the Brillouin-zone boundary.'>-2°
These observations are of the crucial importance for a quan-
titative understanding of the carrier-induced spin-spin inter-
actions and magnon damping and have highlighted the pos-
sible limitations of various existing theoretical approaches.
For example, the prediction of magnon-phonon coupling as
the origin of magnon damping!'® and disorder as the origin of
zone-boundary anomalous softening?' have been ruled out in
recent experiments.18’20 Furthermore, the dramatic differ-
ence in the sensitivity of long-wavelength and zone-
boundary magnon modes on the density of mobile charge
carriers has emerged as one of the most puzzling feature.
Observed for a finite range of carrier concentrations, while
the spin stiffness remains almost constant, the softening and
broadening of the zone-boundary modes show substantial en-
hancement with increasing hole concentration. '

Most of the theoretical investigations of spin dynamics in
these ferromagnetic manganites have been carried out in the
strong-coupling (double-exchange) limit (J/W=1) of the
ferromagnetic Kondo lattice model (FKLM), where mobile
(e,) electrons in a partially filled band (of bandwidth W) are
coupled ferromagnetically (with exchange interaction J) to
the localized core (1,,) spins using a variety of approaches.?
Although providing a good description of magnon damping,
these investigations, however, could not satisfactorily ac-
count for the observed zone-boundary anomalous softening.
In a recent variational investigation, anomalous softening has
been demonstrated to be pronounced only in the
intermediate-coupling regime (J/W~1).22 Furthermore, in
this intermediate-coupling regime, by taking into account the
Coulomb repulsion between the mobile electrons, which is
the largest energy scale in manganites and often omitted in
the conventional FKLM investigations, recent theoretical in-
vestigations have also demonstrated the appearance of sev-
eral realistic features, such as doping-dependent asymmetry
of the ferromagnetic phase and enhanced zone-boundary
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anomalous softening, thereby highlighting the importance of
correlated motion of electrons on spin dynamics.?32*

It is therefore of interest to investigate theoretically the
influence of correlated motion of charge carriers in a band
ferromagnet on the spin-wave excitation spectrum, particu-
larly the short-wavelength modes. The objective of the
present paper is to investigate the correlation-induced renor-
malization of spin-wave excitation spectrum over the entire
Brillouin zone in the ferromagnetic state of the Hubbard
model. We will incorporate correlation effects in terms of
self-energy and vertex corrections within a systematic
inverse-degeneracy expansion scheme wherein the spin-
rotational symmetry and hence the Goldstone mode are ex-
plicitly preserved order by order.

The inverse-degeneracy expansion scheme is a systematic
expansion in powers of 1/N, where A is the degeneracy of
the partially filled (usually d) shell, and has been discussed
earlier in detail in terms of an orbitally degenerate Hubbard
model,®

. U
H= 2 @aplikar= 4 Si-Si (1)

kao

where S,:Ea\lfjag‘lfm is the total spin operator in terms of
the electronic field operator W,,=(a;na;0)), and «
=1,2,...,N is the orbital index. In analogy with 1/§ for
quantum spin systems, the inverse-degeneracy parameter
1/N plays the role of £ in determining the magnitude of
quantum corrections. The inverse-degeneracy approach sys-
tematizes the different diagrammatic contributions in powers

of 1/N, such as for the irreducible particle-hole propagator

#(q, w),

d(q,0) = O+ ¢V p@ g -on (2)
which yields the transverse spin-fluctuation propagator,
. ¢(q,0)
X (q,0) = : (3)
1-Ud(q,w)

In the broken-symmetry state, this propagator yields both the
low-energy (collective) spin-wave excitations and the high-
energy (single-particle) Stoner excitations. Spin-rotation
symmetry of the Hamiltonian implies a pole (1-U¢(0,0)
=0) in Eq. (3) corresponding to the Goldstone mode for ar-
bitrary N. As the Goldstone-mode condition U¢(0,0)=1 is
already exhausted by the zeroth-order (classical) term in Eq.
(2), it follows that all higher-order (quantum) terms must
individually vanish for ¢, w=0. The inverse-degeneracy ex-
pansion therefore explicitly preserves the Goldstone-mode
order by order.

In this paper we consider the saturated ferromagnetic state
in which the Fermi energy (€p) lies in the majority-spin band
owing to large exchange splitting such that magnetization m
is equal to the particle density n. This is similar to the half-
metallic ferromagnetic state as observed in the low-
temperature ferromagnetic phase of many systems such as
manganites®® and ordered-double perovskites.”® In Eq. (2),
the bare particle-hole propagator,
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FIG. 1. First-order quantum corrections to the irreducible
particle-hole propagator ¢(q, ).
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where €, =¢€,—0A are the Hartree-Fock band energies, 2A
=mU is the exchange band splitting, and the superscript +(—)
refers to particle (hole) states above (below) the Fermi en-
ergy €p. In terms of this bare particle-hole propagator, the
RPA ladder sum,

Qo) _ mg
- Ux%(q,w) w+wg—i17

Xipa(Q, @) = " +5(q, ),

©)

provides a classical (unrenormalized) description of nonin-
teracting spin-fluctuation modes, which include both the
low-energy magnon excitations (amplitude mq~m and en-
ergy wg) and the high-energy Stoner excitations S(q, ®).

The first-order quantum corrections ¢(1), obtained re-
cently for the saturated ferromagnetic state,’ consist of four
distinct processes involving self-energy and vertex correc-
tions, as shown diagrammatically in Fig. 1. The expressions
for these diagrams have been given earlier.’ As required from
the spin-rotation symmetry, the net quantum correction ¢!
vanishes identically for ¢, w=0 due to an exact cancellation
in order to explicitly preserve the Goldstone mode in the
ferromagnetic state. Moreover, this cancellation holds for all
o at ¢g=0, indicating no spin-wave amplitude renormaliza-
tion, as expected for the saturated ferromagnet in which there
are no quantum corrections to magnetization.

II. SPIN-CHARGE COUPLING

Keeping terms up to first order in ¢, the spin-fluctuation
propagator (3) can be expressed as
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1
“q,w) = 6
X ) = e T — S (6)

in terms of the first-order magnon self-energy 3(q,w)
=U?¢V(q, ). From the expressions for the different contri-
butions to the quantum correction ¢(1)(q,w), it is seen that

the first-order magnon self-energy has the following approxi-
mate structure:

S(q,0) = 2 mepA(Q LTk, q - Q- Q),

()

highlighting the spin-charge coupling in the ferromagnetic
state with the charge fluctuation term

1
M(kiq-Q.w—-0) = — — @®
et Q- & to-Q-in

in the majority-spin band. This correlation-induced coupling
between the spin and charge fluctuations arises from the scat-
tering of a magnon (with energy —wzwg) into intermediate
spin-excitation states accompanied by charge fluctuations in
the majority-spin band. These intermediate states include
both the magnon excitations (with energy —{= QO) and
Stoner excitations (spread over the Stoner contmuum) This
spin-charge coupling is similar to the three body correlations
between the Fermi-sea electron-hole pair and a magnon con-
sidered in the recent variational investigation.??

In Eq. (7), I represents the interaction vertex for the spin-
charge coupling and is given by

I‘(k,q,w,Q,Q)—U<X (k’q’w) 2A’(q,w;Q,Q) ’

)
where
1 Ok’ O,/
ZA/(q,w;Q,Q) O(Q Q)EX (k ,q,w))( (k Q Q)
(10)
and
1
Xkig0) = o (11)
€ q— € tw—I7

This representation of the magnon self-energy, with the
structure of the spin-charge interaction vertex as in Eq. (9),
brings out the similarity with the corresponding result for the
ferromagnetic Kondo lattice model,2’” where the term
1/2A7(q,w;Q,Q) is simply equal to 1/(2A+w). For the
Hubbard model as well, the two terms in the k’ summation
in Eq. (10) decouple for g=0, and the term 1/2A'=1/(2A
+ ). Generally, the term 1/2A’ has weak momentum depen-
dence due to the averaging over momentum k'.

For ¢=0, the spin-charge interaction vertex I' and the
magnon self-energy vanish identically, and the Goldstone
mode is therefore explicitly preserved. For small ¢, I'?
~(q.Ve)?, indicating short-range interaction. Also, the
spin-charge coupling results in a quantum correction only to
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the exchange contribution to the spin stiffness as required;
quantum corrections to the delocalization contribution of the
type (q.V)?¢ cancel exactly.’

The overall strength of this spin-charge interaction vertex
in Eq. (9) is enhanced as ~(1/m)? with decreasing band
filling n=m. This results in an enhancement of the magnon
self-energy as (1/m)?, accounting for the two factors of m
from the k summation and the magnon amplitude in Eq. (7).
This behavior of the magnon self-energy with band filling
has been investigated quantitatively with respect to both
magnon damping and anomalous softening, as discussed
later.

To illustrate the correlation-induced renormalization of
spin-wave excitations, we have carried out quantitative in-
vestigations mostly for the square and simple-cubic (sc) lat-
tices with band dispersion

K= — ZIE cos(k,a) +4t' E cos(k a)cos(k,a), (12)

u<v

where 7 and ¢’ refer to the nearest- and next-nearest-neighbor
hoppings, respectively, and u,v=x,y,z. For the spin stiff-
ness calculation, we have also considered the body—centered-
cubic lattice with band dispersion

& = — 8t cos(ka/2)cos(kyal2)cos(k.al2)
+2t'(cos k,a + cos kya + cos k.a). (13)

For the square and bcc lattices, the respective bandwidths
are given by W=8t and W=16¢ as long as ' <t/2, as
considered in our quantitative investigations. Similarly, for
the sc lattice, the bandwidth W=12¢ for ' <t/4. Our consid-
eration for 7’ is motivated by its favorable role in stabilizing
the ferromagnetic ordering, as predicted using a variety of
approaches.?® This has also been demonstrated recently!'®
the Goldstone-mode-preserving investigation due to reduc-
tion in correlation-induced exchange contributions to spin
stiffness, which have destabilizing tendency on the ferromag-
netic state. In the following we set t=1.

III. RENORMALIZED MAGNON SPECTRUM

The renormalized magnon energy wq for mode q is ob-
tained from the pole condition [1-UR¢(q,-w,)=0] in Eq.
(3) which also corresponds to the peak in the magnon spec-
tral function Aq(w)=:—TIm x *(q,—w), the broadening of
which provides a quantitative measure of magnon damping,
as discussed in Sec. V. The numerical evaluation of the quan-
tum correction ¢! by integrating over the intermediate
(Q,Q) states has been discussed earlier.'” We note that the
evaluation of ¢! was carried out by including contributions
of both the magnon and Stoner excitations.

We find that the renormalized magnon energy w, for N/
=1 is substantially lower in comparison to the bare (RPA)
magnon energy wg throughout the Brillouin zone, as shown
in Fig. 2. This highlights the need to incorporate the strong
renormalization due to spin-charge coupling in realistic com-
parisons. Indeed, in recent SPEELS studies,’ the measured
spin-wave energies in ultrathin films of Fe were found to be
significantly smaller than the RPA-level result.
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FIG. 2. (Color online) Renormalized magnon energy (wg) is
reduced significantly in comparison to the bare (RPA) energy ("’2)
due to correlation-induced spin-charge coupling, as shown for (a)
square and (b) simple-cubic lattices, highlighting the overestimation
of RPA, as also reported in a recent spin-wave excitation measure-
ment on the ultrathin film of Fe (Ref. 3). These results have been
obtained for n=0.5 with U/W=1 and ' =0.45 for the square lattice
and with U/W=1.5 and t'=0.25 for the cubic lattice. Magnon ex-
citations lie well within the Stoner gap (right scale).

For an orbitally degenerate ferromagnet (such as Fe with
N'=5 3d orbitals per site), the bare and renormalized magnon
dispersions wg and w, shown in Fig. 2 provide, within the
first-order approximation, upper and lower bounds, corre-
sponding to N'— o0 and N'=1, respectively. This is because
the first-order quantum correction ¢V is suppressed by the
factor 1/N for an N-orbital-per-site system,” and therefore
with increasing NV the renormalized dispersion approaches
the bare (RPA) dispersion wg from below as A/— o, While
the RPA result (A=) provides the upper bound of the dis-
persion to all orders, the lower bound (N'=1) is correct only
to first order as higher-order terms might yield a lower dis-
persion.

The above 1/N suppression of quantum corrections was
obtained for the A-orbital Hubbard model (1) with identical
intraorbital interaction S;,.S;, and interorbital interaction
(Hund’s coupling) Sia.S,ﬂ? For arbitrary Hund’s coupling J,
the quantum correction factor has been obtained recently?’
and is approximately given by the expression (U?+(N
—1)J%)/(U+(N=1)J)?, which rapidly approaches 1/A with
increasing Hund’s coupling J, particularly for large N.
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FIG. 3. (Color online) Renormalized spin stiffness for different
number of orbitals N, showing the 1/A suppression of quantum
corrections with orbital degeneracy, evaluated for the bcc lattice
with bandwidth W=16¢=3.2 eV, Coulomb interaction energy U

=W=3.2 eV, and lattice parameter a=2.87 A for Fe. The mea-
sured value for Fe is 280 meV A2

We have quantitatively examined the role of this orbital
degeneracy and 1/ suppression of quantum corrections on
the spin stiffness. Figure 3 shows the renormalized spin stift-
ness D=D - 4D evaluated for different numbers of or-
bitals . where D' refers to the bare spin stiffness and pw
to the first-order quantum correction.®!? Here we have con-
sidered a bcc lattice with #'/¢=0.5, bandwidth W=16¢
=3.2 eV, Coulomb interaction energy U=W=3.2 eV, and
the lattice parameter a=2.87 A for Fe. These parameter val-
ues are close to those considered in a recent investigation of
spin-wave excitations in Fe using a realistic band-structure
calculation,’® where the interaction energy considered is U
=2.13 eV (so that the magnetic moment evaluated per Fe
atom is equal to 2.12ug) and the bandwidth from the calcu-
lated density-of-states (DOS) plot is seen to be about 4 eV.
Our calculated values for the renormalized spin stiffness for
N=5 are close to the measured value 280 meV A? for Fe.?!

In an unsaturated ferromagnet, characterized by vanishing
Stoner gap and spin-wave branch merging with the Stoner
continuum, quantum corrections will generally involve en-
hanced Stoner contribution. In addition, there will be finite
quantum corrections to magnetization, the O(w) term in
¢(q,w), and hence to the magnon amplitude. These addi-
tional features of spin-wave renormalization would need to
be included for realistic systems such as transition metals
which are not strictly saturated ferromagnets.

However, specifically with regard to bcc iron, it should be
noted that the spin-resolved DOS obtained from realistic
band-structure calculations show a deep minimum in the
minority-spin DOS near the Fermi energy.*® Well known as a
characteristic feature of bcc-lattice transition metals,3? this
feature implies that Stoner excitations are pseudogapped.
Furthermore, the majority-spin band is seen to be nearly full,
implying a nearly saturated ferromagnet. A particle-hole
transformation will result in a partially occupied lower band
and a (nearly) empty upper band, as considered in our inves-
tigation, justifying the quantitative comparison.
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IV. SELF-ENERGY CORRECTION AND ANOMALOUS
SOFTENING

In addition to magnon-energy reduction due to quantum
corrections (Fig. 2), the renormalized magnon spectrum also
shows significant anomalous softening near the zone bound-
ary, particularly along the I'-X direction, highlighting the
anomalous momentum dependence of the quantum correc-
tion. While the bare magnon dispersion shows nearly
Heisenberg-model behavior with magnon energies at X and
M (for d=2) in the ratio of 1:2 and at X, M, and R (for d
=3) in the ratio of 1:2:3, the renormalized magnon dispersion
clearly shows strong softening at X relative to M and R. This
anomalous softening implies that additional exchange cou-
plings J,,J3,J,, etc., must be included in order to describe
the magnon dispersion in terms of an effective localized-spin
model. Interestingly, in addition to CMR manganites, signifi-
cant anomalous softening near the zone boundary has also
been reported in recent spin-wave dispersion measurement
along Fe[001] for Fe film on W(110) by SPEELS.?

Now we investigate the effect of carrier concentration on
anomalous softening in the context of CMR manganites. We
find that the zone-boundary anomalous softening along the
I'-X direction is enhanced substantially with decreasing band
filling, as shown in Fig. 4(a). Indeed, such behavior has been
observed in recent spin-wave excitation measurements in the
ferromagnetic phase of manganites.'$1?

This zone-boundary anomalous softening is a direct con-
sequence of the anomalous momentum dependence of the
static magnon self-energy 3 =U?¢", as shown in Fig. 4(b).
The large enhancement in the magnon self-energy at X yields
a large reduction in the renormalized magnon energy. The
substantial enhancement in the anomalous softening with de-
creasing band filling 7 is due to ~1/n? enhancement of spin-
charge coupling as discussed below Eq. (11). These results
for zone-boundary anomalous softening are in agreement
with the variational calculation,>* where a proper account of
correlated electron motion was found to be necessary for the
ferromagnetic manganites.

Figure 5 shows the magnon self-energy 2(q) for the sc
lattice. In view of the observed anomalous softening in fer-
romagnetic manganites, we focus on the ¢ dependence in the
I'-X direction and compare with the Heisenberg form (1
—cos g) corresponding to nearest-neighbor coupling. We find
that the bare magnon dispersion is nearly Heisenberg type
and shows a weak dependence on band filling. However, the
magnon self-energy shows appreciable enhancement at the
zone boundary in comparison with the Heisenberg form, im-
plying zone-boundary softening of the renormalized magnon
energy wg—mE(q). Here the magnon self energy 2(q,w)
was evaluated at the bare magnon energy wz—wg. In con-
trast, the static self-energy evaluated with w=0 shows no
such zone-boundary enhancement, highlighting the role of
dynamical effect. Furthermore, we find that this dynamical
effect on anomalous softening becomes less pronounced with
increasing band filling.

V. CORRELATION-INDUCED MAGNON DAMPING

We now turn to the role of spin-charge coupling on mag-
non damping. At the RPA level, magnon damping is absent
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FIG. 4. (Color online) (a) Renormalized magnon spectrum for
the square lattice shows anomalous softening along the I'-X direc-
tion, which becomes more pronounced with decreasing band filling
n, arising from (b) an anomalous momentum dependence of the
magnon self-energy, which has a maximum at X and similar filling
dependence. Here ¢’ =0.45 and U/W=1.0. Magnon excitations lie
well within the Stoner gap (right scale) even for the lowest band
filling n=0.3.

for low-energy modes at zero temperature and arises only at
energies above the Stoner gap due to decay into Stoner ex-
citations. However, spin-charge coupling results in finite
magnon damping in a band ferromagnet even for magnon
modes lying within the Stoner gap. Considering in Eq. (7)
only the contribution of collective excitations (5) for simplic-

1 Magnon Self Energy ——
I ~1-cos(q) -----
0.8}
= 2A=mU=W -
E 0.6} n=0.3 /,—"'_
T t=0.25
W 04}
0.2}
0
r q X

FIG. 5. (Color online) The magnon self-energy E(q,w:—wﬁ;)
for the sc lattice shows significant anomalous enhancement near the
zone boundary compared to the Heisenberg form, implying anoma-

lous softening of the renormalized magnon energy.
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FIG. 6. (Color online) Correlation-induced spin-charge coupling
results in substantial damping of magnon modes which becomes
more pronounced near the zone boundary, shown here for (a) square
lattice with ¢'=0.45, n=0.4 and U/W=1.0 and (b) simple-cubic
lattice with ¢'=0.25, n=0.5, and U/W=1.5.

ity, we obtain the imaginary part of the magnon self-energy,

1 _
7—TIm S(qw) =2, mQFzﬁ(elthrQ e o+ Q%),
k.Q

(14)

which yields finite magnon damping and linewidth, arising
from the scattering of a magnon (energy wg) into intermedi-
ate magnon states (energy QQ) accompanied with charge
fluctuations (energy eltq +Q_611_) in the majority-spin band.
Magnon damping is further enhanced when the contribution
of Stoner excitations is also included.

We have quantitatively examined magnon damping in
terms of the magnon spectral function Aq(w)=:—TIm x *(q,
—w) using Eq. (3) by including the contribution of both the
magnon and Stoner excitations. In order to highlight the role
of correlation-induced magnon damping, we have considered
relatively large Stoner gap, as seen in Figs. 2 and 4, so that
magnon damping is absent at the RPA level. Figure 6 shows
the renormalized magnon spectral function Aq(w) which is
substantially broadened near the zone boundary. This is in
broad agreement with the experimental observations of mag-
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FIG. 7. (Color online) Correlation-induced magnon damping be-
comes more pronounced with decreasing band filling, as shown for
the zone-boundary modes for (a) square lattice with '=0.45 and
U/W=1.0 and (b) simple-cubic lattice with ¢t'=0.25 and U/W
=1.5.

non damping in ultrathin transition-metal films'~* and ferro-
magnetic manganites.'>-17.19

We have also investigated the dependence of magnon
damping on band filling n for the zone-boundary mode
where damping is most pronounced. With decreasing band
filling, damping is enhanced substantially as shown in Fig. 7,
thereby highlighting the role of charge fluctuations in the
magnon-damping mechanism. Similar influence of carrier
concentration has also been observed recently in the ferro-
magnetic manganites.'”

Several realistic features such as multilayers and inter-
faces (due to nonmagnetic substrate and capping layers) have
also been observed to substantially influence spin-wave ex-
citations in ferromagnetic ultrathin films of many transition
metals. 3% These features have been investigated theoreti-
cally by taking into account their effects on electronic struc-
ture, although only at the RPA level.”8 Therefore an exten-
sion of our investigation with detailed electronic band
structure is desirable for a more quantitative comparison.

VI. CONCLUSION

In conclusion, we have investigated the effects of
correlation-induced spin-charge coupling on the spin-wave
excitation spectrum in the ferromagnetic state of the Hub-
bard model by including self-energy and vertex corrections

014414-6



SPIN-CHARGE COUPLING IN A BAND FERROMAGNET.:...

within a Goldstone-mode-preserving scheme. Arising from
the scattering of a magnon into intermediate spin excitation
states (including both magnon and Stoner excitations) ac-
companied with charge fluctuations in the majority-spin
band, the spin-charge coupling results not only in substantial
reduction of magnon energies but also in anomalous soften-
ing and damping of magnon modes near the zone boundary
lying within the Stoner gap. Both the magnon damping and
anomalous zone-boundary softening become more pro-
nounced with decreasing band filling.

Even when the bare magnon dispersion showed nearly
Heisenberg form, the renormalized dispersion was shown to
exhibit strong softening at X relative to M (for d=2) and
R (for d=3). This anomalous softening at X was shown to
be a direct consequence of an anomalous enhancement of
the magnon self-energy and implies that the correlated mo-
tion of electrons “generates” additional exchange couplings
J>,J3,J4, etc., within an equivalent localized-spin model with
the same magnon dispersion.

The strong 1/ suppression of quantum corrections due
to orbital degeneracy was highlighted by an evaluation of the
renormalized spin stiffness for different orbital number N.
For the N'=5 orbital case relevant for Fe and using realistic
bandwidth, Coulomb interaction, and lattice-parameter val-
ues, the quantum correction to spin stiffness was found to be
about 25% at optimal filling. This provides an estimate of the
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quantum suppression involved in the measured spin stiffness
value of 280 meV A? of Fe,’! arising from the spin-charge
coupling.

These results are of qualitative interest for the ferromag-
netic CMR manganites and transition-metal ultrathin films in
the context of the observed magnon-energy reduction,
anomalous zone-boundary softening, and magnon damping,
highlighting the influence of correlated electron motion on
their spin dynamics. However, several realistic features need
to be incorporated for a quantitative comparison with experi-
ments. These include, for example, in the case of mangan-
ites, Hund’s coupling of the e, electrons with the core (z,,)
spins and their orbital degree of freedom, which was pre-
dicted to have a major influence on the anomalous softening
when coupled with the lattice degree of freedom.® Similarly,
for the ultrathin transition-metal films, a realistic electronic
description of the magnetic multilayers as well as of the non-
magnetic substrates and capping layers is necessary in view
of the accumulating experimental evidence for their substan-
tial influence on the electron-spin dynamics.33-33
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